Scientific Named Entity Referent Extraction is often more complicated than traditional Named Entity Recognition (NER). For example, in polymer science, chemical structure may be encoded in a variety of nonstandard naming conventions, and authors may refer to polymers with conventional names, commonly used names, labels (in lieu of longer names), synonyms, and acronyms. As a result, accurate scientific NER methods are often based on task-specific rules, which are difficult to develop and maintain, and are not easily generalized to other tasks and fields. Machine learning models require substantial expert-annotated data for training. Here we propose polyNER: a semi-automated system for efficient identification of scientific entities in text. PolyNER applies word embedding models to generate entity-rich corpora for productive expert labeling, and then uses the resulting labeled data to bootstrap a context-based word vector classifier. Evaluation on materials science publications shows that the polyNER approach enables improved precision or recall relative to a state-of-the-art chemical entity extraction system at a dramatically lower cost: it required just two hours of expert time, rather than extensive and expensive rule engineering, to achieve that result. This result highlights the potential for human-computer partnership for constructing domain-specific scientific NER systems.