# **Knowledge Graph driven Discovery**

Alexander Belikov, PhD

### **Decision making process**



#### What if data is complex?



#### It should be organized!

## What do problems do KG solve?

- Organize (normalize) unstructured data
- Facilitate access, visualize
- Generate insights





## **Applications at Different Scales**

- Personal Knowledge Graphs
  - Enhance Learning Process
- Enterprise Knowledge Graphs
  - Project Management
  - Opportunity Selection / Optimization
- Domain Knowledge Graphs
  - Advance Domain Knowledge
  - Validation / Verification / Fact checking



### What is a Knowledge Graph?

A knowledge graph, also known as a semantic network, represents **a network of real-world entities**—i.e. objects, events, situations, or concepts—and illustrates the relationship between them. This information is usually stored in a graph database and visualized as a graph structure, prompting the term knowledge "graph."

Ontology is the backbone of KG



### How do we create a KG?

Inputs:

- 1. structured: rdfs, grounded KGs, ontologies
- 2. semi-structured input: json, xml, csv
- 3. unstructured: text, digitally created pdf, scanned text, audio, audio records, emails

#### Ideal case

structured data that uses the same ontology - can be directly added to KG

#### Less ideal case

"To make pancakes use one cup of flour, two eggs and two tablespoons of sugar"

## Organizing incoming data as KG (grounding)

Not trivial when input data is not structured:

- identify named entities, relations
- map named entities to ontology
- map relation to ontology
- possibly enhance ontology



## Generating signals from KGs : Examples

Discovery and Selection

- 1. Science
  - a. predict technologies that will be important tomorrow
  - b. identify correct statements in literature
- 2. Finance
  - a. identify perspective startups
  - b. financial instruments
- 3. Management
  - a. facilitate HR policies, who should be promoted
  - b. what is the best skill to learn, given my background?
- 4. Operations
  - a. logistics optimization



## How to generate signals from KG?

Supervised or unsupervised? Transfer learning?

- 1. Graph derived features used by Vanilla ML
- 2. Graph neural networks
  - a. embeddings
  - b. evolution on graphs, MPNN methods



#### References

- <u>KG tutorial from WSDM</u>
- Dynamic networks in Science
- Prediction of robust scientific facts from literature

