
Integrating Knowledge Graphs into
the Debian Ecosystem

KG‑powered dependency, vulnerability & license insights

Alexander Belikov
GrowGraph

alexander-belikov.github.io

DebConf2025, Brest, France 2025-07-15

Plan

2

Knowledge Graphs: Motivation

Building DebKG

DebKG: it is already useful

Next Steps

Why do we need DebKG?
Problem

 Debian’s ecosystem is a sprawling network of

● 70 000+ packages

● 50 000+ open bugs

● Thousands of maintainers

All stored in disparate files and trackers—making it hard to answer questions like “Which packages are impacted by

CVE‑2025‑1234?” or “Which maintainers handle GPL‑licensed libraries?”

Why Knowledge Graphs?

 Knowledge graphs model entities (packages, bugs, maintainers) and their relationships (depends_on, affects, authored_by)

as a single, unified graph.

Intuitive: Mirror the natural structure of Debian concepts

Powerful: Express complex queries (e.g., multi‑hop dependency chains) in one line of Cypher

Extensible: Easily add new data sources (security feeds, license info, bug metadata)

3

● Visualize
● Evaluate
● Predict

Why do we need DebKG?
How DebKG Delivers

Ingest: Crawl Packages.gz, Debian Security Tracker, maintainers, copyright files

Map: Apply a Debian‑specific ontology (classes, properties, constraints)

Load: Publish into a property‑graph database (e.g., Neo4j or Dgraph)

Demo: Trace CVE impact across package trees in seconds

Where We Go Next

Expand: Add suite‑based snapshots (bookworm, trixie, etc.)

Enrich: Incorporate external feeds (OSS license databases, vulnerability timelines)

Build: Community‑driven Web UI and CLI toolkits for packagers, QA, and security teams

Contribute: Join us on https://github.com/alexander-belikov/deb-kg (soon on salsa) - help refine the ontology,

improve ingest pipelines, or add new visualizations

4

https://github.com/alexander-belikov/deb-kg

Why do we need graphs?
Interactions!

5

t

What is a Knowledge Graph?
A Knowledge Graph (KG) is a graph-based data structure (network) where entities (nodes) and their relationships (edges)

are explicitly represented.

It integrates structured and unstructured data into a unified, queryable format.

Core Components

● Entities: e.g., package, contributor, bug

● Relations: e.g., maintains, depends_on, reported_in

● Attributes: properties of nodes/edges (e.g., text, severity, created)

● Semantics: often enhanced with ontologies or schemas for interpretability

Why It Matters

● Handles heterogeneous, relational data natively (e.g., linking maintainers, different types of relations between

packages etc)

● Enables non-tabular (e.g., Graph Neural Networks, community detection)

● Captures contextual and temporal dependencies (which might be causal) 6

Ontology: the backbone of KG
● Ontology: set of concepts and categories in a subject area or domain that shows

their properties and the relations between them

(something that experts agree upon)

[classes, properties, axioms, constraints]

● It matters for precision: models get

confused without an ontology (context)

● Allow for reification and semantic reasoning

[validation]

7

Benefits of KG

Natural Fit for Software Development / Project Management

● Packages, tools, maintainer, bugs and their relationships are inherently graph-structured

● Easily integrates heterogeneous sources (Debian API, bug reports, etc)

● Flexible wrt to extension

Augments Retrieval & Explainability

● Powers semantic search and entity-centric queries (e.g., "Which maintainer would be best to help?")

● Human-interpretable reasoning chains support transparency & auditability

Enhances Modeling

● Improves prediction tasks (e.g., fraud detection, legal risk etc) via relational inductive bias

● Enables Graph ML: GNNs, link prediction, anomaly detection

● Few-shot generalization using structure (e.g., new firms with similar graph neighborhoods)

8

Property Graphs vs Triple Stores
Data Model

Property Graph: Nodes and edges with key-value properties

Triple Store: RDF triples (subject–predicate–object)

Schema Flexibility

Property Graph: Flexible, schema-optional

Triple Store: Based on RDF/OWL; more structured

Query Language

Property Graph: Gremlin, Cypher

Triple Store: SPARQL

Semantics & Reasoning

Property Graph: Limited or custom logic, community detection modules

Triple Store: Built-in reasoning (RDFS/OWL)

Use Cases

Property Graph: Operational, traversal-heavy apps (e.g., fraud detection)

Triple Store: Knowledge representation, semantic web

Standards Compliance

Property Graph: No formal standards

Triple Store: W3C standards (RDF, SPARQL)

Performance

Property Graph: Optimized for deep traversals

Triple Store: Optimized for pattern matching and inferencing
9

Graph Databases

10

Database License Query Horizontal Scaling Comment

JanusGraph Apache 2.0 Gremlin Native Best for massive scales

Memgraph BSL Cypher Enterprise only In-memory focus

Neo4j GPLv3 Cypher Enterprise only Mature Ecosystem

ArangoDB BSL AQL Enterprise only Close to noSQL

Database License Query Language Horizontal Scaling

Jena Fuseki Apache 2.0 SPARQL Limited

Virtuoso GPL/Commercial SPARQL Limited for Community

GraphDB Commercial SPARQL Only for Enterprise

Triple Stores

Graphcast
Declarative Transformations of data to Property graphs

11

https://growgraph.github.io/graphcast

Ontocast
Ontology Assisted Agentic Framework
for Semantic Triple Extraction

https://growgraph.github.io/ontocast

https://growgraph.github.io/graphcast
https://growgraph.github.io/ontocast

[Example] KG in Publishing

Problems
1. Author disambiguation
2. Reviewer recommendation

a. identify reviewers that publish
in related fields

b. remove such reviewers that
belong the same collaboratives
communities

Explicit vs implicit interactions:
X authors paper P
X and Y: X and Z co-author P1, Y and Z co-author P2

12

DebKG (0.0.1)

13

Sources:
http://deb.debian.org/debian/dists/

bookworm/main/binary-amd64/Packages.gz
https://www.debian.org/bugs/

Raw Data ➤ GraphCast ➤ Neo4j

http://deb.debian.org/debian/dists/bookworm/main/binary-amd64/Packages.gz
http://deb.debian.org/debian/dists/bookworm/main/binary-amd64/Packages.gz
https://www.debian.org/Bugs/

DebKG
Snapshot: bookworm

packages: 67967

maintainers: 2122

bugs: 51690

14

Use cases
● Downstream vulnerability: (P) ➤ (P), (P) ➤ (B)

Evaluate global effect of vulnerabilities for prioritization

● License audit: (P) ➤ (P), (P) ➤ (L)

Evaluate compliance / compatibility risks

● Maintainer expertise: (P) ➛ (P), (M) ➤ (P)

Evaluate maintainer rescue potential

● Connect external data sources (customer feedback) to drive Debian innovation

What do we want to achieve? Better coverage, faster delivery, resilience?

15

Vulnerability Propagation
How to measure the global effect of a bug?
Suppose libssl3 has a bug…
How does it affect packages/teams downstream? 340 maintainers, 1500+ packages (!)

16

License Tracking / Alignment
Proposed Pipeline

Legal obligations, compatibility issues, redistribution risks etc (copyleft spread / infection)…

Degrees of freedom:

Freedom to use, to modify etc

Endorsement prohibition,

Trademark protection

Represent as Hasse diagram (lattice)

Incorporate smaller licenses

Implementation: copyright parsing, e.g.
https://sources.debian.org/src/curl/8.15.0~rc3-1~exp1/

debian/copyright/
17

https://sources.debian.org/src/curl/8.15.0~rc3-1~exp1/debian/copyright/
https://sources.debian.org/src/curl/8.15.0~rc3-1~exp1/debian/copyright/

Next Steps
● More metadata

○ Treat package versions (automated version ordering)

○ Fine-grained maintainers

○ Impact weighed by importance (downloads)

● Semantic similarity analysis: similar function, similar implementations

● Evolution
○ Suite-based time serie of KG

○ History of updates

● External data: to steer development effort

● Online KG enabled intelligence platform [resource allocation recommendations]

18

Conclusion

● KG graphs are flexible

● KG easily unlock a multitude of resource allocation insights

● Graphs reveal long-range (multi-hop) interactions and are indispensable for

detecting collective modes, deviations from equilibrium

● DebKG can already be used for evaluation of vulnerability impact

Thank you!

19

