
Transforming Data into Property Graphs
with Graflo
Create Property Graphs in 5 minutes with GraFlo

Alexander Belikov
GrowGraph, 2025

alexander-belikov.github.iohttps://tinyurl.com/graflo

1

http://alexander-belikov.github.io
https://tinyurl.com/graflo

End-of-Workshop Achievements
1. install graflo

2. ingest a graflo example

3. create a new working schema

4. identify a limitation graflo

5. find a graflo bug

6. contribute to graflo

7. ⭐⭐⭐

2

Graflo
Graph

Ingestion

Graph DB A

Graph DB B

Tables

JSON

Plan

3

0. Setup
1. Knowledge Graphs: What, Why and How
2. GraFlo : User Perspective
3. GraFlo Internals
4. NB: Graph Database Zoo
5. Practicum

Glossary

4

Labeled Property Graph (LPG):
a data model to represent (typed) nodes,
relationships, and their properties

Graph Database:
an engine to store and query LPGs

Vertex (or Node):
A fundamental unit of data representing an entity
(e.g., a Person, a Publication). Has a type and
properties.

Edge (or Relationship):
A directed connection between two vertices (e.g.,
owns, citedBy). May have properties.

Graph Schema:
A blueprint defining the allowed types of nodes,
relationships, and their properties in the graph.

ETL (Extract, Transform, Load)
The process of moving data from sources to a target
system. GraFlo simplifies the Transformation and
Loading for graphs.

Declarative Ingestion
Specifying what the graph should be (via schema)
rather than writing step-by-step code for how to build
it.

Community Detection
the process of grouping nodes into densely connected
subgroups within a network

LPG: What, Why, How

5

Vertices have types (labels)
Directed relationships have types

Both have properties

Uniqueness constraints (for edges)

Data Structure + Scaffolding

Scaffolding: Query Language, Data Science tools

LPG: What, Why, How

6

Graphs can be represented as Tables… But

1. 🔗 Relationships: Implicit in SQL (consider 3NF), Explicit in PKG.
2. 🌊Schema fluidity: SQL schemas are structured and require migrations for change in a PKG, these

concepts are native.
3. 🚄Superior Performance for Connections, Paths, and Patterns: recursive JOINs for SQL, that degrade

exponentially, natural for Graph DBs.
4. 🔭Holistic, Un-siloed Views of Data
5. Native AI/ML Readiness

SQL: Not designed for graph-native machine learning or structural reasoning.
PKG: The graph topology is the feature. PKGs directly enable:

● Graph Neural Networks (GNNs)
● Community and cluster detection
● Centrality and influence analysis
● Knowledge-graph grounding for LLMs
● Multi-hop reasoning and retrieval

Typical Graph ML tasks

Node-Level Tasks

Node Classification (Node Labeling): Predict labels or categories for nodes (e.g., sector classification, fraud detection)

Node Regression: a continuous value for each node (e.g., employee churn probability, asset risk score)

Node Embedding: dense vector representations that capture graph context

Edge-Level Tasks

Link Prediction (Edge Prediction): Predict missing or future edges (e.g., latent relationships between analysts & firms)

Edge Classification / Regression: Predict type/weight of relationship (e.g., sentiment strength, transaction volume)

Graph-Level Tasks

Graph Classification: Predict a label for the entire graph (e.g., classify firm networks by risk profile)

Graph Regression: Predict a continuous value (e.g., fund performance based on its holdings graph)

Subgraph Tasks

Subgraph Matching / Querying: Identify occurrences of a given pattern (e.g., insider trading-like motifs)

Subgraph Embedding / Evaluation: Assess local structure (e.g., influence zones, team dynamics)

Unsupervised & Generative Tasks

Community Detection: Discover tightly connected groups (e.g., analyst echo chambers)

Graph Generation: Model how graphs evolve or simulate new structures (e.g., synthetic networks for stress tests)
7

World Model, Digital Twin

LPG: What, Why, How

8

1. Native Graph Data Structures

● Node & Edge Storage: Instead of rows and columns, data is stored as nodes (vertices) and relationships (edges), both
capable of holding key-value properties.

● Pre-Wired Connections: Relationships are stored as direct pointers or links between nodes. This allows for constant-time
traversal - jumping from one node to its neighbors is incredibly fast, unlike costly SQL JOINs.

● Example: A Customer node is directly linked to an Order node via a :PURCHASED relationship.

2. Scaffolding

● Indexes: Accelerate finding the search space for traversals. Constraints: Ensure data integrity and uniqueness (e.g., "Ensure
ProductID is unique for all Product nodes"). This prevents duplicate data and maintains a clean graph.

3. Intuitive Graph Query Language

● Declarative Pattern Matching: You describe the shape of the sub-graph you're looking for, and the engine finds it for you.
Purpose: Makes complex relationship queries intuitive and readable, turning what would be a multi-paragraph SQL query into
a few clear lines of code.

Motivational Problem: Eigenfactor calculation
Goal:
 Measure a journal’s true scientific influence, not just how many papers it publishes.

Idea:
 A journal is influential if it is cited by other influential journals.
 Influence “flows” through the citation network - like reputation spreading.

How it’s computed (conceptually):

1. Look at all citations between journals over a time window.
2. Count how often Journal A cites Journal B.

This forms a journal-to-journal influence matrix (a network).
3. Repeatedly pass influence along citation link (similar to PageRank).
4. The stable flow gives each journal an Eigenfactor score.

Key point:
 The calculation starts by counting all 3-hop paths: Journal A ←Pub -(cites)→ Pub →Journal B.

9

 Why Graph Databases Make Eigenfactor Easy
The problem:
 To build the influence matrix, we must follow millions of
“who-cites-whom” links across several steps.

With files or SQL databases, this involves many complex JOINs and
huge intermediate tables.

Why it’s painful in SQL or CSV files:

● Citations form a network, not a table.
● Multi-step (“A cites B which belongs to C…”) queries become

slow and hard to write.
● Adding time filters or more hops makes queries balloon in

complexity.
● Storing papers, journals, and citations in separate tables hides

the structure we need.

Why it’s easy in a Graph Database:

● Citations are stored as edges, not JOINs.
● Walking “Paper → Cites → Paper → Journal” is a natural

graph traversal. 10

FOR j IN media FILTER j.issn in ["2049-3630", ...]
 RETURN MERGE({{ja : j.issn}},
 {{stats : (
 FOR p in 1 INBOUND j publications_media_edges
 FILTER p.year == _year
 FOR p2 in 1 OUTBOUND p publications_publications_edges
 FILTER p2.year < _year AND p2.year >= (_year - delta)
 FOR j2 in 1 OUTBOUND p2 publications_media_edges
 FILTER j2.issn in ["2049-3630", ...]
 COLLECT jbt = j2.issn WITH COUNT INTO size SORT size DESC
 RETURN {{jb : jbt, s : size}}
) }}
)

AQL query

How to Ingest Data to Graph Databases?

11

Tell the a GDB about
● the correspondences about the fields in the data and properties of the vertices and edges
● which fields should be treated as unique
● which pairs of sets of fields form an edge between two vertices

Pain point

Manual ETL Mapping Overhead: Every source requires custom
scripts or queries to map raw data to nodes/edges. This
becomes unmanageable as sources grow.

Schema Drift and Rigidity: Adapting graph schema when data
models change (e.g. new fields or entity types) is error-prone
and lacks abstraction.

Duplication of Logic Across Pipelines: Repeating
transformation logic in multiple ingestion scripts leads to code
duplication, versioning issues, and maintenance debt.

No Separation of Concerns: Data mapping, transformation, and
loading are tightly coupled, making reuse or schema redesign
difficult.

Lack of Reusability and Documentation: Imperative ingestion
pipelines (e.g. in GSQL, Cypher, Python) are often
undocumented and hard to share or audit.

Hard to Support Multiple Backends: Each target DB (Neo4j,
TigerGraph, etc.) requires different ingestion syntax and
connectors—no portability across engines.

Poor Scalability Without Parallelism: Ad hoc scripts often
process sequentially and can't leverage multiple cores for
high-volume data ingestion.

No Declarative Validation or Indexing: Constraints like unique
IDs or compound indexes must be manually enforced
or scripted, increasing risk of inconsistencies.

How to Ingest Data to Graph Databases?

12

A complex web of K x N pipelines

Clearly there must be a Graph Schema &
Transformation Language (GSTL)
that encodes separately
● transformations for each of K sources
● graph schema
● load functions for each of N databases

Solution: Graflo
Developer Perspective: implement N backends.

User Perspective: implement K data source

adapters.

Features:

● Declarative transformations vs. custom ETL coding

● Adapters for Neo4j, ArangoDB and TigerGraph:

Multi-database adapter eliminates vendor lock-in

● Tested on graphs with billions of edges

13

GraFlo: User Perspective
Schema setup

1. Define Vertices

a. Properties (optional types)

b. Indexes

2. Define Edges

a. Properties/Weights

b. Indexes

3. Define Resources

a. Transformations

b. Vertex Mappings

c. Edge Mappings (optional)

4. Define a Vocabulary of Transforms

5. Schema metadata 14

Workflow

● Study your dataset

● Create a mental model

● Create a schema

● Visualize the schema

● Set up the backend

● Ingest

● Check the ingestion results

Plotting

plot_schema

This command creates multiple visualizations of the schema:
1. Vertex-to- vertex relationships
2. Vertex fields and their relationships
3. Resource mappings

The visualizations are saved to the specified output path.

Args:
schema_path: Path to the schema configuration file
figure_output_path: Path where the visualization will be

saved
prune_low_degree_nodes: Whether to remove nodes with

low connectivity from the visualization (default: False)

Example: $ uv run plot_schema -c
schema.yaml -o schema.png

Options:
 -c, --schema-path PATH [required]
 -o, --figure-output-path PATH
[required]
 -p, --prune-low-degree-nodes BOOLEAN

15

Schema: Vertex Config and Edge Config

VertexConfig: Defines vertex collections (nodes) in the graph
EdgeConfig: Defines edge collections (relationships) between
vertices

VertexConfig(
 vertices: list[Vertex],
 blank_vertices: list[str],
 db_flavor: DBFlavor
)

EdgeConfig(edges: list[Edge])

Extended Vertex Example

Extended Edge Example

16

Transforms

17

Setting Up Transforms in Schema
1. Global Transform Library (Schema Level)

Define reusable transforms in the schema's
transforms section

2. Inline Transforms (Resource Level)

Transforms map and transform fields during ingestion.
1. Declarative mapping: rename/remap fields (no code)
2. Functional transforms: custom Python functions for complex transformations
3. Vertex mappings (special case, check example 1)

Example: Analyst Reports [IBES]

Institutional Brokers' Estimate System (IBES)
18

https://www.investopedia.com/terms/i/ibes.asp

IBES Schema: Vertices

19

IBES Schema: Vertices & Edges

20

IBES Schema: Transforms

21

Extra Functions
Beyond ingestion, GraFlo provides utilities for querying, filtering, and managing graph

data.

fetch_present_documents() - Check which documents from a batch already exist

keep_absent_documents() — Get documents that don't exist in the database

aggregate() — Perform aggregations on collections

● Supports COUNT, SUM, AVG, MIN, MAX

● Group by a discriminant field

● Apply filters

22

GraFlo internals: Resource Transformation to Vertices & Edges
Actors are processing units that transform raw data into graph structures.

Raw data is a json (potentially nested).

They run in sequence within a Resource, each handling a specific

transformation step.

Descend actor is responsible for recursive processing and mapping.

Four actor types, executed in priority order:

23

Data
Quant

Descend Transform Vertex Edge Accumulate

GraFlo internals: Resource Transformation to Vertices & Edges
Actors are processing units that transform raw data into graph structures. They run in sequence within a Resource, each

handling a specific transformation step.

Actor Types: four actor types, executed in priority order

24

DescendActor (priority 10):

● Processes nested/hierarchical data structures

● Expands lists or nested dictionaries

● Executes child actors for each nested item

● Maintains location tracking via LocationIndex

TransformActor (priority 20):

● Applies data transformations

● Executes transform functions (e.g., field mapping, data

cleaning)

● Results stored in buffer_transforms or buffer_vertex

● Can target specific vertices

VertexActor (priority 50): Creates vertex documents

● Extracts fields from documents

● Merges data from transforms and buffers

● Accumulates vertices in ctx.acc_vertex[vertex_name][lindex]

● Applies filters and field selection

EdgeActor (priority 90): Creates edges between vertices

● Merges vertices first (via merge_vertices())

● Renders edges based on vertex matches

● Calculates edge weights from vertex fields

Graph Databases

25

Database License Query
Language

Horizontal Scaling Comment

JanusGraph Apache 2.0 Gremlin Native Best for massive scales

Nebula Apache 2.0 nGQL Native

Dgraph Apache 2.0 GraphQL Native

Apache AGE Apache 2.0 Cyper+SQL PostgreSQL clustering

Memgraph BSL Cypher Enterprise only In-memory focus

Neo4j GPLv3 Cypher Enterprise only Mature Ecosystem

ArangoDB BSL AQL Enterprise only Close to noSQL

TigerGraph Prop GSQL Enterprise only Typed Schema

Graph DB Extras

26

Web Interface

● Neo4j: Bloom (visual exploration), Browser (Cypher queries)

● ArangoDB: Web UI (queries, management, graph visualization)

● TigerGraph: GraphStudio (visual schema design, query building)

Graph Data Science

● Neo4j: GDS Library - 70+ production-grade algorithms (PageRank, community detection, node similarity, machine learning

pipelines)

● ArangoDB: Graph Analytics - Custom implementations using Pregel, integrated with machine learning connectors

● TigerGraph: Built-in GSQL - 30+ parallel graph algorithms optimized for massive-scale analytics

Key Differentiators

● Neo4j: Most mature GDS ecosystem, enterprise support

● ArangoDB: Multi-model analytics (document + graph)

● TigerGraph: Native parallel execution on distributed data

Graph DB Idiosyncrasy

27

Neo4j
Pure Labeled Property Graph. Vertices have labels (types). Indexes over multiple properties. Types
not enforced but possible to set constraints. Type mismatches may only surface at runtime.
Schema-last.

ArangoDB
Document-Graph Hybrid models. Types are collections (of JSONs). Edges store handles to nodes.
Automatic index on _key (can be manipulated). Can represent nested data.
Type agnostic but possible to enable type validation.

Tigergraph
Schema-first, rigid, strongly-typed. Secondary indexes can be only single property. Graphs have to
be composed from globally defined vertices and edges.

Nomenclature.

Application: Reviewer Recommendation
Authors

Research Fields

Publications

28

Application: Reviewer Recommendation

Problems
1. The same author may have multiple ids.
2. Given the publication records, who would be a good reviewer for

paper?

Solutions
1. Disambiguate

a. construct
[coAuth] Author ↔ Author from
Author → Publication

b. derive communities
c. fuzzy match within communities

2. Recommend Reviewers
a. construct

[coDomain] Author ↔ Author from
Author → Publication → ResearchField

b. derive communities in
[coDomain] Author ↔ Author

c. For each new publication pick reviewers from the same
[coDomain] comm id that have a different [coAuth] comm id 29

Practicum
Check you .env files (ports specifically, but also username/password)

ArangoDB Web Interface: http://localhost:8535

Neo4j Web Interface: http://localhost:7475

Try to ingest examples from https://github.com/growgraph/graflo/tree/main/examples

and visualize them using Web Interface.

30

http://localhost:8535
http://localhost:7475
https://github.com/growgraph/graflo/tree/main/examples

Practice Creating Schemas
1. grouplens.org/datasets/movielens/20m/

2. https://www.kaggle.com/datasets/rmisra/news-category-dataset

3. https://www.kaggle.com/datasets/mylesoneill/magic-the-gathering-cards

4. [secret dataset]

31

http://grouplens.org/datasets/movielens/20m/
https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://www.kaggle.com/datasets/mylesoneill/magic-the-gathering-cards

Roadmap
1. Improve API UX (how easy is it for developer to use the package).

2. Implement SQL schema to GraFlo schema generator

3. Add SQL API: ingestion of SQL resources

4. Add Schema validation and version control

5. Add Nebula and Janus as Graph Database backends.

32

https://hub.docker.com/r/vesoft/nebula-graphd/
https://hub.docker.com/r/janusgraph/janusgraph

Conclusion
● The World is a Graph: The most complex and connected data is naturally

modeled as a graph.

● GraFlo Makes it Practical: It eliminates the ETL bottleneck, providing a

declarative, scalable, and multi-database framework for building your

knowledge graph.

● You Are Now Equipped: You can install GraFlo, design schemas, ingest data, and

leverage the power of graph databases in minutes, not days.

33

