&°

Transforming Data into Property Graphs
with Graflo

Create Property Graphs in 5 minutes with GraFlo

Alexander Belikov
GrowGraph, 2025

https://tinyurl.com/graflo alexander-belikov.github.io

http://alexander-belikov.github.io
https://tinyurl.com/graflo

End-of-Workshop Achievements

1. install graflo
2. ingest a graflo example
3. create a new working schema
4. identify a limitation graflo
5. find a graflo bug
6. contribute to graflo
. a —)
’ . Graph DB A }
JSON
Graflo
— 3 Graph
i Ingestion
Graph DB B 1
N /

Plan

0. Setup

1. Knowledge Graphs: What, Why and How
2. GraFlo : User Perspective

3. GraFlo Internals

4. NB: Graph Database Zoo

5. Practicum

Glossary

Labeled Property Graph (LPG):
a data model to represent (typed) nodes,
relationships, and their properties

Graph Database:
an engine to store and query LPGs

Vertex (or Node):

A fundamental unit of data representing an entity
(e.g., a Person, a Publication). Has a type and
properties.

Edge (or Relationship):
A directed connection between two vertices (e.g.,
owns, citedBy). May have properties.

Graph Schema:
A blueprint defining the allowed types of nodes,
relationships, and their properties in the graph.

ETL (Extract, Transform, Load)

The process of moving data from sources to a target
system. GraFlo simplifies the Transformation and
Loading for graphs.

Declarative Ingestion

Specifying what the graph should be (via schema)
rather than writing step-by-step code for how to build
it.

Community Detection
the process of grouping nodes into densely connected

subgroups within a network -
4

LPG: What, Why, How

Vertices have types (labels)
Directed relationships have types hassSkill

Both have properties

type: Computer Language
name: Rafael

name: Python

Uniqueness constraints (for edges)

age: 25
level: intermediate

Data Structure + Scaffolding

Scaffolding: Query Language, Data Science tools

LPG: What, \Why, How

Graphs can be represented as Tables... But

1. (% Relationships: Implicit in SQL (consider 3NF), Explicit in PKG.
2. (& Schema fluidity: SQL schemas are structured and require migrations for change in a PKG, these
concepts are native.
3. ;Superior Performance for Connections, Paths, and Patterns: recursive JOINs for SQL, that degrade
exponentially, natural for Graph DBs.
4. “s*Holistic, Un-siloed Views of Data
5. Native Al/ML Readiness
SQL: Not designed for graph-native machine learning or structural reasoning.
PKG: The graph topology is the feature. PKGs directly enable:
e Graph Neural Networks (GNNs)
Community and cluster detection
Centrality and influence analysis
Knowledge-graph grounding for LLMs
Multi-hop reasoning and retrieval

Typical Graph ML tasks

World Model, Digital Twin

Node-Level Tasks
Node Classification (Node Labeling): Predict labels or categories for nodes (e.g., sector classification, fraud detection)
Node Regression: a continuous value for each node (e.g., employee churn probability, asset risk score)
Node Embedding: dense vector representations that capture graph context

Edge-Level Tasks
Link Prediction (Edge Prediction): Predict missing or future edges (e.g., latent relationships between analysts & firms)
Edge Classification / Regression: Predict type/weight of relationship (e.g., sentiment strength, transaction volume)
Graph-Level Tasks

Graph Classification: Predict a label for the entire graph (e.g., classify firm networks by risk profile)

Graph Regression: Predict a continuous value (e.g., fund performance based on its holdings graph)
Subgraph Tasks

Subgraph Matching / Querying: Identify occurrences of a given pattern (e.g., insider trading-like motifs)

Subgraph Embedding / Evaluation: Assess local structure (e.g., influence zones, team dynamics)
Unsupervised & Generative Tasks

Community Detection: Discover tightly connected groups (e.g., analyst echo chambers)

Graph Generation: Model how graphs evolve or simulate new structures (e.g., synthetic networks for stress tests)

LPG: What, Why, How

1. Native Graph Data Structures

e Node & Edge Storage: Instead of rows and columns, data is stored as nodes (vertices) and relationships (edges), both
capable of holding key-value properties.

e Pre-Wired Connections: Relationships are stored as direct pointers or links between nodes. This allows for constant-time
traversal - jumping from one node to its neighbors is incredibly fast, unlike costly SQL JOINs.

e Example: A Customer node is directly linked to an Order node via a : PURCHASED relationship.

2. Scaffolding

e Indexes: Accelerate finding the search space for traversals. Constraints: Ensure data integrity and uniqueness (e.g., "Ensure
ProductID is unique for all Product nodes"). This prevents duplicate data and maintains a clean graph.

3. Intuitive Graph Query Language

e Declarative Pattern Matching: You describe the shape of the sub-graph you're looking for, and the engine finds it for you.
Purpose: Makes complex relationship queries intuitive and readable, turning what would be a multi-paragraph SQL query into

a few clear lines of code.

Motivational Problem: Eigenfactor calculation

Goal:
Measure a journal’s frue scientific influence, not just how many papers it publishes.

Idea:
A journal is influential if it is cited by other influential journals.
Influence “flows” through the citation network - like reputation spreading.

How it’s computed (conceptually):

1. Look at all citations between journals over a time window.
2. Count how often Journal A cites Journal B.
This forms a journal-to-journal influence matrix (a network).
3. Repeatedly pass influence along citation link (similar to PageRank).
4. The stable flow gives each journal an Eigenfactor score.

Key point:
The calculation starts by counting all 3-hop paths: Journal A <Pub -(cites)— Pub —Journal B.

Why Graph Databases Make Eigenfactor Easy

The problem:
To build the influence matrix, we must follow millions of
“who-cites-whom?” links across several steps.

With files or SQL databases, this involves many complex JOINs and
huge intermediate tables.

Why it’s painful in SQL or CSV files:

e Citations form a network, not a table.
Multi-step (“A cites B which belongs to C...”) queries become
slow and hard to write.

e Adding time filters or more hops makes queries balloon in
complexity.

e Storing papers, journals, and citations in separate tables hides
the structure we need.

Why it’s easy in a Graph Database:

e Citations are stored as edges, not JOINs.
e Walking “Paper — Cites — Paper — Journal” is a natural
graph traversal.

AQL query

FORj IN media FILTER j.issn in ["2049-3630", ...]

)

RETURN MERGE({{ja : j.issn}},
{{stats : (
FOR pin 1 INBOUND j publications_media_edges
FILTER p.year == _year

FOR p2in 1 OUTBOUND p publications_publications_edges
FILTER p2.year < _year AND p2.year >= (_year - delta)
FORj2in 1 OUTBOUND p2 publications_media_edges

FILTER j2.issnin ["2049-3630", ...]

COLLECT jbt =j2.issn WITH COUNT INTO size SORT size DESC

RETURN {{jb: jbt, s : size}}
) 1

How to Ingest Data to Graph Databases?

Tell the a GDB about

e the correspondences about the fields in the data and properties of the vertices and edges

e which fields should be treated as unique

e which pairs of sets of fields form an edge between two vertices

Pain point

Manual ETL Mapping Overhead: Every source requires custom
scripts or queries to map raw data to nodes/edges. This
becomes unmanageable as sources grow.

Schema Drift and Rigidity: Adapting graph schema when data
models change (e.g. new fields or entity types) is error-prone
and lacks abstraction.

Duplication of Logic Across Pipelines: Repeating
transformation logic in multiple ingestion scripts leads to code
duplication, versioning issues, and maintenance debt.

No Separation of Concerns: Data mapping, transformation, and
loading are tightly coupled, making reuse or schema redesign
difficult.

Lack of Reusability and Documentation: Imperative ingestion
pipelines (e.g. in GSQL, Cypher, Python) are often
undocumented and hard to share or audit.

Hard to Support Multiple Backends: Each target DB (Neo4;j,
TigerGraph, etc.) requires different ingestion syntax and
connectors—no portability across engines.

Poor Scalability Without Parallelism: Ad hoc scripts often
process sequentially and can't leverage multiple cores for
high-volume data ingestion.

No Declarative Validation or Indexing: Constraints like unique
IDs or compound indexes must be manually enforced

or scripted, increasing risk of inconsistencies.

How to Ingest Data to Graph Databases?

A complex web of K x N pipelines

Clearly there must be a Graph Schema &
Transformation Language (GSTL)
that encodes separately
e transformations for each of K sources
® graph schema
® |oad functions for each of N databases

Data Source D

Solution: Graflo

Developer Perspective: implement N backends.
User Perspective: implement K data source
adapters.

Features:

e Declarative transformations vs. custom ETL coding
e Adapters for Neo4j, ArangoDB and TigerGraph:

Multi-database adapter eliminates vendor lock-in
e Tested on graphs with billions of edges

Data Source D

GraFlo: User Perspective

Workflow

Study your dataset

Create a mental model
Create a schema

Visualize the schema

Set up the backend

Ingest

Check the ingestion results

Schema setup

1.

Define Vertices
a. Properties (optional types)
b. Indexes
Define Edges
a. Properties/Weights
b. Indexes
Define Resources
a. Transformations
b. Vertex Mappings
c. Edge Mappings (optional)
Define a Vocabulary of Transforms
Schema metadata

- e
EdgeActor
source: work Xg]";;%e\gg;
target: work 3

plot_schema

This command creates multiple visualizations of the schema:
1. Vertex-to- vertex relationships

2. Vertex fields and their relationships

3. Resource mappings

The visualizations are saved to the specified output path.

Args:

schema_path: Path to the schema configuration file

figure_output_path: Path where the visualization will be
saved

prune_low_degree_nodes: Whether to remove nodes with
low connectivity from the visualization (default: False)

name: keep_suffix_id
t.input: doi
t.output: doi

n B _suffix i DescendActor
t.input: id key: referenced works
t.output: key T

VertexActor
name: work

Example: S uv run plot_schema -c
schema.yaml -o schema.png

TransformActor
name: keep_suffix_id
t.input: id
t.output: key /

Options:
-c, --schema-path PATH [required]
-0, --figure-output-path PATH

[required]
-p, --prune-low-degree-nodes BOOLEAN

Schema: Vertex Config and Edge Config

Extended Vertex Example
VertexConfig: Defines vertex collections (nodes) in the graph

EdgeConfig: Defines edge collections (relationships) between
vertices

VertexConfig(
vertices: list[Vertex],
blank_vertices: list[str],
db_flavor: DBFlavor

)

EdgeConfig(edges: list[Edge])

Transforms

Setting Up Transforms in Schema

1. Global Transform Library (Schema Level)
Define reusable transforms in the schema's
transforms section

2. Inline Transforms (Resource Level)

Transforms map and transform fields during ingestion.

1. Declarative mapping: rename/remap fields (no code)

2. Functional transforms: custom Python functions for complex transformations
3. Vertex mappings (special case, check example 1)

Example: Analyst Reports [IBES]

TICKER CUsSIP CNAME OFTIC ACTDATS

0000 87482X10 TALMER BANCORP TLMR 20140310

0000 TALMER BANCORP TLMR 20140311

0000 87482X10 TALMER BANCORP TLMR 20140311 KEEFE

JPMORGAN

ESTIMID

ANALYST ERECCD

RBCDOMIN ARFSTROM J 2

ALEXOPOULOS S NaN

MCGRATTY C 2

OUTPERFORM
OVERWEIGHT

OUTPERFORM

ETEXT

IRECCD ITEXT
BUY
BUY

BUY

analyst ihes
TS % \
s \ ‘L \
4 \
k Q CUSIP CNAME OFTIC ESTIMID last_name initial ERECCD ETEXT IRECCD
agency publication / | | | |
) e J] definifion \L deﬁ:\ttion \ definition \ \ x deﬁ$tion
7 N
L’ ’ N NY cusip cname oftic aname last_name initial erec etext irec
|]
ticker recommendation \ i, / \L \ / \\ / /
ticker agency analyst recommendation

Institutional Brokers' Estimate System (IBES)

ITEXT _key
1
\l definfition
itext _key
]

publication

https://www.investopedia.com/terms/i/ibes.asp

analyst

7 N
’
N

IBES Schema: Vertices

7 A
4 \4
¥ >

ticker recommendation

ibes.yaml : ibes.yaml

publication ticker
i i dl : tickers
: publication ' :
>: publications cusip
3 chame
datetime_review oftic
datetime_announce -

Xes : ds
cusip
chame

: hash oftic
o: false agency
bi : agencies

datetime_review
: hash
: false

1elds:

datetime_announce

analyst
analysts

last_name
initial

last_name

initial
recommendation

recommendations

IBES Schema: Vertices & Edges

pubLicalliull
ticker
analyst
agency

publication
ex_lI : false

= datetime_review
- datetime_announce

analyst
publication
publication
recommendation

analyst

7 N
’

7/ N
K N
agency publication
. N
e N
7/ N &
¥
ticker recommendation

IBES Schema: Transforms

ibes yurce me: 1ibes

ticker Foo: cast_ibes_analyst
analyst nodule: graflo.util.transform

recommendation ut:
agency = ANALYST
parse date_ibes output:
graflo.utll.transform = last_name
ut: = initial
ANNDATS |
ANNTIMS CUSIP: cusip
output: v cname
datetime_announce Of C: oftic
parse_date_ibes
graflo.util.transform FSTIMID: aname

REVDATS o . erec
AARLS \ etext

output: ¢ i
datetime review

J;

TransformActor

TransformActor ranst ormAcl TranatoemActos) B Y sformActor T Trauormcor)
t.nput: ERECCD, ETEXT, IRECCD, rmcr Clnput: ESTIMID : CU AME, OFTIC tinput: ANALYST Cinput: REVDATS, REVIIMS Linput. ANNDATS, ANNTIMS
__toutput: erec, etext, irec. text Qulyul nnnme _ toutput: cusip, cname, oftic // toutput: last_name, mllinl/ ST datetime_review lnulpul datetime announce

Extra Functions

Beyond ingestion, GraFlo provides utilities for querying, filtering, and managing graph
data.

fetch_present_documents() - Check which documents from a batch already exist
keep_absent_documents() — Get documents that don't exist in the database
aggregate() — Perform aggregations on collections

e Supports COUNT, SUM, AVG, MIN, MAX
® Group by a discriminant field
e Apply filters

GraFlo internals: Resource Transformation to Vertices & Edges

Actors are processing units that transform raw data into graph structures.
Raw data is a json (potentially nested).

They run in sequence within a Resource, each handling a specific
transformation step.

Descend actor is responsible for recursive processing and mapping.

Four actor types, executed in priority order:

Data
Quant

Y

Descend

Y

Transform

Y

Vertex

GraFlo internals: Resource Transformation to Vertices & Edges

Actors are processing units that transform raw data into graph structures. They run in sequence within a Resource, each
handling a specific transformation step.
Actor Types: four actor types, executed in priority order

DescendActor (priority 10): VertexActor (priority 50): Creates vertex documents
® Processes nested/hierarchical data structures e Extracts fields from documents
e Expands lists or nested dictionaries e Merges data from transforms and buffers
e Executes child actors for each nested item ® Accumulates vertices in ctx.acc_vertex[vertex_name][lindex]
e Maintains location tracking via LocationIndex e Applies filters and field selection
TransformActor (priority 20): EdgeActor (priority 90): Creates edges between vertices
e Applies data transformations e Merges vertices first (via merge_vertices())

e Executes transform functions (e.g., field mapping, data e Renders edges based on vertex matches
cleaning) e (Calculates edge weights from vertex fields
® Results stored in buffer_transforms or buffer_vertex

e Can target specific vertices -
24

Graph Databases

Database License Query Horizontal Scaling Comment
Language
JanusGraph Apache 2.0 Gremlin Native Best for massive scales
Nebula Apache 2.0 nGQL Native
Dgraph Apache 2.0 GraphQL Native
Apache AGE Apache 2.0 Cyper+SQL PostgreSQL clustering
Memgraph BSL Cypher Enterprise only In-memory focus
Neodj GPLv3 Cypher Enterprise only Mature Ecosystem
ArangoDB BSL AQL Enterprise only Close to noSQL
TigerGraph Prop GSQL Enterprise only

Typed Schema ‘

Graph DB Extras

Web Interface

e Neodj: Bloom (visual exploration), Browser (Cypher queries)
e ArangoDB: Web Ul (queries, management, graph visualization)
e TigerGraph: GraphStudio (visual schema design, query building)

Graph Data Science

e Neodj: GDS Library - 70+ production-grade algorithms (PageRank, community detection, node similarity, machine learning
pipelines)

e ArangoDB: Graph Analytics - Custom implementations using Pregel, integrated with machine learning connectors

e TigerGraph: Built-in GSQL - 30+ parallel graph algorithms optimized for massive-scale analytics

Key Differentiators

° Neodj: Most mature GDS ecosystem, enterprise support
e ArangoDB: Multi-model analytics (document + graph)
e TigerGraph: Native parallel execution on distributed data

Graph DB Idiosyncrasy

Neodj

Pure Labeled Property Graph. Vertices have labels (types). Indexes over multiple properties. Types
not enforced but possible to set constraints. Type mismatches may only surface at runtime.
Schema-last.

ArangoDB

Document-Graph Hybrid models. Types are collections (of JSONs). Edges store handles to nodes.
Automatic index on _key (can be manipulated). Can represent nested data.

Type agnostic but possible to enable type validation.

Tigergraph
Schema-first, rigid, strongly-typed. Secondary indexes can be only single property. Graphs have to
be composed from globally defined vertices and edges.

Nomenclature. -
27

Application: Reviewer Recommendation

Authors

author_id,FullName,HIndex,research_sector
309238221625,Guillaume Lemaitre,10,32057259

Relationship schema:

Publication

747324850364 ,Patrick L. Meras,4,8258574
987843024183,S. I. Konovalov,5,30262949

Research
Research Fields

field_of_study_id,display_name,level,children
87687168,Digital audio,4,6800068
87687168,Digital audio,4,24579023
87687168,Digital audio,4,30246029

Publications

PublicationId,authors,topics,publication_year,Doi
465031,"['id:300648343950, name:Tadeusz Kaczorowski'
'1d:566936217113, name:Anna-Karina Kaczorowska'

'id:214748948560, name:Sebastian Dorawa']",[185592680 89423630],2019,10.3390/V11070657

Application: Reviewer Recommendation

Problems
1. Thesame author may have multiple ids.
2. Given the publication records, who would be a good reviewer for
paper?

Publication -> Field

. Author -> Publication
Solutions

1. Disambiguate
a. construct
[coAuth] Author <> Author from
Author > Publication
b. derive communities
c. fuzzy match within communities
2. Recommend Reviewers
a. construct
[coDomain] Author < Author from
Author > Publication > ResearchField
b. derive communitiesin
[coDomain] Author < Author
c. Foreach new publication pick reviewers from the same
[coDomain] comm id that have a different [coAuth] comm id

Field -> Field

Practicum

Check you .env files (ports specifically, but also username/password)

ArangoDB Web Interface: http://localhost:8535

Neo4j Web Interface: http://localhost:7475

Try to ingest examples from https://github.com/growgraph/graflo/tree/main/examples

and visualize them using Web Interface.

http://localhost:8535
http://localhost:7475
https://github.com/growgraph/graflo/tree/main/examples

Practice Creating Schemas

grouplens.org/datasets/movielens/20m/

https://www.kaggle.com/datasets/rmisra/news-category-dataset

https://www.kaggle.com/datasets/mylesoneill/magic-the-gathering-cards

B w N e

[secret dataset]

http://grouplens.org/datasets/movielens/20m/
https://www.kaggle.com/datasets/rmisra/news-category-dataset
https://www.kaggle.com/datasets/mylesoneill/magic-the-gathering-cards

Roadmap

Lk whnNh e

Improve APl UX (how easy is it for developer to use the package).
Implement SQL schema to GraFlo schema generator

Add SQL API: ingestion of SQL resources

Add Schema validation and version control

Add Nebula and Janus as Graph Database backends.

https://hub.docker.com/r/vesoft/nebula-graphd/
https://hub.docker.com/r/janusgraph/janusgraph

Conclusion

® The World is a Graph: The most complex and connected data is naturally
modeled as a graph.

e GraFlo Makes it Practical: It eliminates the ETL bottleneck, providing a
declarative, scalable, and multi-database framework for building your
knowledge graph.

® You Are Now Equipped: You can install GraFlo, design schemas, ingest data, and
leverage the power of graph databases in minutes, not days.

